CustomBondForce¶
-
class
OpenMM::CustomBondForce¶ This class implements bonded interactions between pairs of particles. Unlike
HarmonicBondForce, the functional form of the interaction is completely customizable, and may involve arbitrary algebraic expressions. It may depend on the distance between particles, as well as on arbitrary global and per-bond parameters.To use this class, create a
CustomBondForceobject, passing an algebraic expression to the constructor that defines the interaction energy between each pair of bonded particles. The expression may depend on r, the distance between the particles, as well as on any parameters you choose. Then calladdPerBondParameter()to define per-bond parameters, andaddGlobalParameter()to define global parameters. The values of per-bond parameters are specified as part of the system definition, while values of global parameters may be modified during a simulation by callingContext::setParameter(). Finally, calladdBond()once for each bond. After a bond has been added, you can modify its parameters by callingsetBondParameters(). This will have no effect on Contexts that already exist unless you callupdateParametersInContext().As an example, the following code creates a
CustomBondForcethat implements a harmonic potential:CustomBondForce* force = new CustomBondForce("0.5*k*(r-r0)^2");
This force depends on two parameters: the spring constant k and equilibrium distance r0. The following code defines these parameters:
force->addPerBondParameter("k"); force->addPerBondParameter("r0");
This class also has the ability to compute derivatives of the potential energy with respect to global parameters. Call
addEnergyParameterDerivative()to request that the derivative with respect to a particular parameter be computed. You can then query its value in aContextby calling getState() on it.Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. select(x,y,z) = z if x = 0, y otherwise.
Methods
CustomBondForceCreate a CustomBondForce.getNumBondsGet the number of bonds for which force field parameters have been defined. getNumPerBondParametersGet the number of per-bond parameters that the interaction depends on. getNumGlobalParametersGet the number of global parameters that the interaction depends on. getNumEnergyParameterDerivativesGet the number of global parameters with respect to which the derivative of the energy should be computed. getEnergyFunctionGet the algebraic expression that gives the interaction energy for each bond setEnergyFunctionSet the algebraic expression that gives the interaction energy for each bond addPerBondParameterAdd a new per-bond parameter that the interaction may depend on. getPerBondParameterNameGet the name of a per-bond parameter. setPerBondParameterNameSet the name of a per-bond parameter. addGlobalParameterAdd a new global parameter that the interaction may depend on. getGlobalParameterNameGet the name of a global parameter. setGlobalParameterNameSet the name of a global parameter. getGlobalParameterDefaultValueGet the default value of a global parameter. setGlobalParameterDefaultValueSet the default value of a global parameter. addEnergyParameterDerivativeRequest that this Forcecompute the derivative of its energy with respect to a global parameter.getEnergyParameterDerivativeNameGet the name of a global parameter with respect to which this Forceshould compute the derivative of the energy.addBondAdd a bond term to the force field. getBondParametersGet the force field parameters for a bond term. setBondParametersSet the force field parameters for a bond term. updateParametersInContextUpdate the per-bond parameters in a Contextto match those stored in thisForceobject.setUsesPeriodicBoundaryConditionsSet whether this force should apply periodic boundary conditions when calculating displacements. usesPeriodicBoundaryConditionsReturns whether or not this force makes use of periodic boundary conditions. -
CustomBondForce(const std::string &energy)¶ Create a
CustomBondForce().Parameters: - energy – an algebraic expression giving the interaction energy between two bonded particles as a function of r, the distance between them
-
int
getNumBonds() const¶ Get the number of bonds for which force field parameters have been defined.
-
int
getNumPerBondParameters() const¶ Get the number of per-bond parameters that the interaction depends on.
-
int
getNumGlobalParameters() const¶ Get the number of global parameters that the interaction depends on.
-
int
getNumEnergyParameterDerivatives() const¶ Get the number of global parameters with respect to which the derivative of the energy should be computed.
-
const std::string &
getEnergyFunction() const¶ Get the algebraic expression that gives the interaction energy for each bond
-
void
setEnergyFunction(const std::string &energy)¶ Set the algebraic expression that gives the interaction energy for each bond
-
int
addPerBondParameter(const std::string &name)¶ Add a new per-bond parameter that the interaction may depend on.
Parameters: - name – the name of the parameter
Returns: the index of the parameter that was added
-
const std::string &
getPerBondParameterName(int index) const¶ Get the name of a per-bond parameter.
Parameters: - index – the index of the parameter for which to get the name
Returns: the parameter name
-
void
setPerBondParameterName(int index, const std::string &name)¶ Set the name of a per-bond parameter.
Parameters: - index – the index of the parameter for which to set the name
- name – the name of the parameter
-
int
addGlobalParameter(const std::string &name, double defaultValue)¶ Add a new global parameter that the interaction may depend on. The default value provided to this method is the initial value of the parameter in newly created Contexts. You can change the value at any time by calling setParameter() on the
Context.Parameters: - name – the name of the parameter
- defaultValue – the default value of the parameter
Returns: the index of the parameter that was added
-
const std::string &
getGlobalParameterName(int index) const¶ Get the name of a global parameter.
Parameters: - index – the index of the parameter for which to get the name
Returns: the parameter name
-
void
setGlobalParameterName(int index, const std::string &name)¶ Set the name of a global parameter.
Parameters: - index – the index of the parameter for which to set the name
- name – the name of the parameter
-
double
getGlobalParameterDefaultValue(int index) const¶ Get the default value of a global parameter.
Parameters: - index – the index of the parameter for which to get the default value
Returns: the parameter default value
-
void
setGlobalParameterDefaultValue(int index, double defaultValue)¶ Set the default value of a global parameter.
Parameters: - index – the index of the parameter for which to set the default value
- defaultValue – the default value of the parameter
-
void
addEnergyParameterDerivative(const std::string &name)¶ Request that this
Forcecompute the derivative of its energy with respect to a global parameter. The parameter must have already been added withaddGlobalParameter().Parameters: - name – the name of the parameter
-
const std::string &
getEnergyParameterDerivativeName(int index) const¶ Get the name of a global parameter with respect to which this
Forceshould compute the derivative of the energy.Parameters: - index – the index of the parameter derivative, between 0 and
getNumEnergyParameterDerivatives()
Returns: the parameter name - index – the index of the parameter derivative, between 0 and
-
int
addBond(int particle1, int particle2, const std::vector<double> ¶meters = std::vector< double >())¶ Add a bond term to the force field.
Parameters: - particle1 – the index of the first particle connected by the bond
- particle2 – the index of the second particle connected by the bond
- parameters – the list of parameters for the new bond
Returns: the index of the bond that was added
-
void
getBondParameters(int index, int &particle1, int &particle2, std::vector<double> ¶meters) const¶ Get the force field parameters for a bond term.
Parameters: - index – the index of the bond for which to get parameters
- particle1 – [out] the index of the first particle connected by the bond
- particle2 – [out] the index of the second particle connected by the bond
- parameters – [out] the list of parameters for the bond
-
void
setBondParameters(int index, int particle1, int particle2, const std::vector<double> ¶meters = std::vector< double >())¶ Set the force field parameters for a bond term.
Parameters: - index – the index of the bond for which to set parameters
- particle1 – the index of the first particle connected by the bond
- particle2 – the index of the second particle connected by the bond
- parameters – the list of parameters for the bond
-
void
updateParametersInContext(Context &context)¶ Update the per-bond parameters in a
Contextto match those stored in thisForceobject. This method provides an efficient method to update certain parameters in an existingContextwithout needing to reinitialize it. Simply callsetBondParameters()to modify this object’s parameters, then callupdateParametersInContext()to copy them over to theContext.This method has several limitations. The only information it updates is the values of per-bond parameters. All other aspects of the
Force(such as the energy function) are unaffected and can only be changed by reinitializing theContext. The set of particles involved in a bond cannot be changed, nor can new bonds be added.
-
void
setUsesPeriodicBoundaryConditions(bool periodic)¶ Set whether this force should apply periodic boundary conditions when calculating displacements. Usually this is not appropriate for bonded forces, but there are situations when it can be useful.
-
bool
usesPeriodicBoundaryConditions() const¶ Returns whether or not this force makes use of periodic boundary conditions.
Returns: true if force uses PBC and false otherwise
-