CustomTorsionForce¶
-
class
OpenMM::CustomTorsionForce¶ This class implements interactions between sets of four particles that depend on the torsion angle between them. Unlike
PeriodicTorsionForce, the functional form of the interaction is completely customizable, and may involve arbitrary algebraic expressions. In addition to the angle formed by the particles, it may depend on arbitrary global and per-torsion parameters.To use this class, create a
CustomTorsionForceobject, passing an algebraic expression to the constructor that defines the interaction energy between each set of particles. The expression may depend on theta, the torsion angle formed by the particles, as well as on any parameters you choose. Then calladdPerTorsionParameter()to define per-torsion parameters, andaddGlobalParameter()to define global parameters. The values of per-torsion parameters are specified as part of the system definition, while values of global parameters may be modified during a simulation by callingContext::setParameter(). Finally, calladdTorsion()once for each torsion. After an torsion has been added, you can modify its parameters by callingsetTorsionParameters(). This will have no effect on Contexts that already exist unless you callupdateParametersInContext(). Note that theta is guaranteed to be in the range [-pi,+pi], which may cause issues with force discontinuities if the energy function does not respect this domain.As an example, the following code creates a
CustomTorsionForcethat implements a periodic potential:CustomTorsionForce* force = new CustomTorsionForce("0.5*k*(1-cos(theta-theta0))");
This force depends on two parameters: the spring constant k and equilibrium angle theta0. The following code defines these parameters:
force->addPerTorsionParameter("k"); force->addPerTorsionParameter("theta0");
If a harmonic restraint is desired, it is important to be careful of the domain for theta, using an idiom like this:
CustomTorsionForce* force = new CustomTorsionForce("0.5*k*min(dtheta, 2*pi-dtheta)^2; dtheta = abs(theta-theta0); pi = 3.1415926535");
This class also has the ability to compute derivatives of the potential energy with respect to global parameters. Call
addEnergyParameterDerivative()to request that the derivative with respect to a particular parameter be computed. You can then query its value in aContextby calling getState() on it.Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. select(x,y,z) = z if x = 0, y otherwise.
Methods
CustomTorsionForceCreate a CustomTorsionForce.getNumTorsionsGet the number of torsions for which force field parameters have been defined. getNumPerTorsionParametersGet the number of per-torsion parameters that the interaction depends on. getNumGlobalParametersGet the number of global parameters that the interaction depends on. getNumEnergyParameterDerivativesGet the number of global parameters with respect to which the derivative of the energy should be computed. getEnergyFunctionGet the algebraic expression that gives the interaction energy for each torsion setEnergyFunctionSet the algebraic expression that gives the interaction energy for each torsion addPerTorsionParameterAdd a new per-torsion parameter that the interaction may depend on. getPerTorsionParameterNameGet the name of a per-torsion parameter. setPerTorsionParameterNameSet the name of a per-torsion parameter. addGlobalParameterAdd a new global parameter that the interaction may depend on. getGlobalParameterNameGet the name of a global parameter. setGlobalParameterNameSet the name of a global parameter. getGlobalParameterDefaultValueGet the default value of a global parameter. setGlobalParameterDefaultValueSet the default value of a global parameter. addEnergyParameterDerivativeRequest that this Forcecompute the derivative of its energy with respect to a global parameter.getEnergyParameterDerivativeNameGet the name of a global parameter with respect to which this Forceshould compute the derivative of the energy.addTorsionAdd a torsion term to the force field. getTorsionParametersGet the force field parameters for a torsion term. setTorsionParametersSet the force field parameters for a torsion term. updateParametersInContextUpdate the per-torsion parameters in a Contextto match those stored in thisForceobject.setUsesPeriodicBoundaryConditionsSet whether this force should apply periodic boundary conditions when calculating displacements. usesPeriodicBoundaryConditionsReturns whether or not this force makes use of periodic boundary conditions. -
CustomTorsionForce(const std::string &energy)¶ Create a
CustomTorsionForce().Parameters: - energy – an algebraic expression giving the interaction energy between three particles as a function of theta, the torsion angle between them
-
int
getNumTorsions() const¶ Get the number of torsions for which force field parameters have been defined.
-
int
getNumPerTorsionParameters() const¶ Get the number of per-torsion parameters that the interaction depends on.
-
int
getNumGlobalParameters() const¶ Get the number of global parameters that the interaction depends on.
-
int
getNumEnergyParameterDerivatives() const¶ Get the number of global parameters with respect to which the derivative of the energy should be computed.
-
const std::string &
getEnergyFunction() const¶ Get the algebraic expression that gives the interaction energy for each torsion
-
void
setEnergyFunction(const std::string &energy)¶ Set the algebraic expression that gives the interaction energy for each torsion
-
int
addPerTorsionParameter(const std::string &name)¶ Add a new per-torsion parameter that the interaction may depend on.
Parameters: - name – the name of the parameter
Returns: the index of the parameter that was added
-
const std::string &
getPerTorsionParameterName(int index) const¶ Get the name of a per-torsion parameter.
Parameters: - index – the index of the parameter for which to get the name
Returns: the parameter name
-
void
setPerTorsionParameterName(int index, const std::string &name)¶ Set the name of a per-torsion parameter.
Parameters: - index – the index of the parameter for which to set the name
- name – the name of the parameter
-
int
addGlobalParameter(const std::string &name, double defaultValue)¶ Add a new global parameter that the interaction may depend on. The default value provided to this method is the initial value of the parameter in newly created Contexts. You can change the value at any time by calling setParameter() on the
Context.Parameters: - name – the name of the parameter
- defaultValue – the default value of the parameter
Returns: the index of the parameter that was added
-
const std::string &
getGlobalParameterName(int index) const¶ Get the name of a global parameter.
Parameters: - index – the index of the parameter for which to get the name
Returns: the parameter name
-
void
setGlobalParameterName(int index, const std::string &name)¶ Set the name of a global parameter.
Parameters: - index – the index of the parameter for which to set the name
- name – the name of the parameter
-
double
getGlobalParameterDefaultValue(int index) const¶ Get the default value of a global parameter.
Parameters: - index – the index of the parameter for which to get the default value
Returns: the parameter default value
-
void
setGlobalParameterDefaultValue(int index, double defaultValue)¶ Set the default value of a global parameter.
Parameters: - index – the index of the parameter for which to set the default value
- defaultValue – the default value of the parameter
-
void
addEnergyParameterDerivative(const std::string &name)¶ Request that this
Forcecompute the derivative of its energy with respect to a global parameter. The parameter must have already been added withaddGlobalParameter().Parameters: - name – the name of the parameter
-
const std::string &
getEnergyParameterDerivativeName(int index) const¶ Get the name of a global parameter with respect to which this
Forceshould compute the derivative of the energy.Parameters: - index – the index of the parameter derivative, between 0 and
getNumEnergyParameterDerivatives()
Returns: the parameter name - index – the index of the parameter derivative, between 0 and
-
int
addTorsion(int particle1, int particle2, int particle3, int particle4, const std::vector<double> ¶meters = std::vector< double >())¶ Add a torsion term to the force field.
Parameters: - particle1 – the index of the first particle connected by the torsion
- particle2 – the index of the second particle connected by the torsion
- particle3 – the index of the third particle connected by the torsion
- particle4 – the index of the fourth particle connected by the torsion
- parameters – the list of parameters for the new torsion
Returns: the index of the torsion that was added
-
void
getTorsionParameters(int index, int &particle1, int &particle2, int &particle3, int &particle4, std::vector<double> ¶meters) const¶ Get the force field parameters for a torsion term.
Parameters: - index – the index of the torsion for which to get parameters
- particle1 – [out] the index of the first particle connected by the torsion
- particle2 – [out] the index of the second particle connected by the torsion
- particle3 – [out] the index of the third particle connected by the torsion
- particle4 – [out] the index of the fourth particle connected by the torsion
- parameters – [out] the list of parameters for the torsion
-
void
setTorsionParameters(int index, int particle1, int particle2, int particle3, int particle4, const std::vector<double> ¶meters = std::vector< double >())¶ Set the force field parameters for a torsion term.
Parameters: - index – the index of the torsion for which to set parameters
- particle1 – the index of the first particle connected by the torsion
- particle2 – the index of the second particle connected by the torsion
- particle3 – the index of the third particle connected by the torsion
- particle4 – the index of the fourth particle connected by the torsion
- parameters – the list of parameters for the torsion
-
void
updateParametersInContext(Context &context)¶ Update the per-torsion parameters in a
Contextto match those stored in thisForceobject. This method provides an efficient method to update certain parameters in an existingContextwithout needing to reinitialize it. Simply callsetTorsionParameters()to modify this object’s parameters, then callupdateParametersInContext()to copy them over to theContext.This method has several limitations. The only information it updates is the values of per-torsion parameters. All other aspects of the
Force(such as the energy function) are unaffected and can only be changed by reinitializing theContext. The set of particles involved in a torsion cannot be changed, nor can new torsions be added.
-
void
setUsesPeriodicBoundaryConditions(bool periodic)¶ Set whether this force should apply periodic boundary conditions when calculating displacements. Usually this is not appropriate for bonded forces, but there are situations when it can be useful.
-
bool
usesPeriodicBoundaryConditions() const¶ Returns whether or not this force makes use of periodic boundary conditions.
Returns: true if force uses PBC and false otherwise
-