ATMForce
¶
-
class ATMForce : public OpenMM::Force¶
The ATMForce class implements the Alchemical Transfer Method (ATM) for OpenMM. ATM is used to compute the binding free energies of molecular complexes and of other equilibrium processes. ATM and its implementation are described in the open access article:
Solmaz Azimi, Sheenam Khuttan, Joe Z. Wu, Rajat K. Pal, and Emilio Gallicchio. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J. Chem. Inf. Model. 62, 309 (2022) https://doi.org/10.1021/acs.jcim.1c01129
Refer to the publication above for a detailed description of the ATM method and the parameters used in this API and please cite it to support our work if you use this software in your research.
The ATMForce implements an arbitrary potential energy function that depends on the potential energies (u0 and u1) of the system before and after a set of atoms are displaced by some amount. For example, you might displace a molecule from the solvent bulk to a receptor binding site to simulate a binding process. The potential energy function typically also depends on one or more parameters that are dialed to implement alchemical transformations.
To use this class, create an ATMForce object, passing an algebraic expression to the constructor that defines the potential energy. This expression can be any combination of the variables u0 and u1. Then call addGlobalParameter() to define the parameters on which the potential energy expression depends. The values of global parameters may be modified during a simulation by calling Context::setParameter(). Next, call addForce() to add Force objects that define the terms of the potential energy function that change upon displacement. Finally, call addParticle() to specify the coordinate transformation applied to each particle. Currently supported coordinate transformations consist of displacing the positions of particles by a fixed amount or by the offset of the positions between two given particles. As any per-particle parameters, changes in particle coordinate transformations take effect only after calling updateParametersInContext().
As an example, the following code creates an ATMForce based on the change in energy of two particles when the second particle is displaced by 1 nm in the x direction. The energy change is dialed using an alchemical parameter Lambda, which in this case is set to 1/2:
ATMForce *atmforce = new ATMForce("u0 + Lambda*(u1 - u0)"); atm->addGlobalParameter("Lambda", 0.5); atm->addParticle(); atm->addParticle(new ATMForce::FixedDisplacement(Vec3(1, 0, 0))); CustomBondForce* force = new CustomBondForce("0.5*r^2"); atm->addForce(force);
Note that calling addParticle() without arguments is equivalent to a zero fixed displacement.
In the example above, the displacement is specified by fixed lab-frame vector. ATMForce also supports variable displacements in internal system coordinates in terms of vector distance between specified particles. For example, if pos[] is the internal array holding the positions of the particles, the following code creates an ATMForce based on the change in energy when the first particle is displaced by the vector pos[2]-pos[1] going from the second particle to the third particle,
ATMForce *atmforce = new ATMForce("u0 + Lambda*(u1 - u0)"); atm->addGlobalParameter("Lambda", 0.5); atm->addParticle(new ATMForce::ParticleOffsetDisplacement(2, 1)); atm->addParticle(); atm->addParticle(); CustomBondForce* force = new CustomBondForce("0.5*r^2"); atm->addForce(force);
where ParticleOffsetDisplacement is the class that describes this particular type of coordinate transformation.
Energy expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, atan2, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. select(x,y,z) = z if x = 0, y otherwise.
If instead of the energy expression the ATMForce constructor specifies the values of a series of parameters, the default energy expression is used:
select(step(Direction), u0, u1) + ((Lambda2-Lambda1)/Alpha)*log(1+exp(-Alpha*(usc-Uh))) + Lambda2*usc + W0; usc = select(step(u-Ubcore), (Umax-Ubcore)*fsc+Ubcore, u), u); fsc = (z^Acore-1)/(z^Acore+1); z = 1 + 2*(y/Acore) + 2*(y/Acore)^2; y = (u-Ubcore)/(Umax-Ubcore); u = select(step(Direction), 1, -1)*(u1-u0)
which is the same as the soft-core softplus alchemical potential energy function in the Azimi et al. paper above.
The ATMForce is then added to the System as any other Force
system.addForce(atmforce);
after which it will be used for energy/force evaluations for molecular dynamics and energy optimization. You can call getPerturbationEnergy() to query the values of u0 and u1, which are needed for computing free energies.
In most cases, particles are only displaced in one of the two states evaluated by this force. It computes the change in energy between the current particle coordinates (as stored in the Context) and the displaced coordinates. In some cases, it is useful to apply displacements to both states. You can do this by providing two displacement vectors to the fixed displacement transformation given to addParticle(). For example, with:
atm->addParticle(new ATMForce::FixedDisplacement(Vec3(1, 0, 0), Vec3(-1, 0, 0)));
the energy u1 will be computed after displacing the particle in the positive x direction, and u0 will be computed after displacing it in the negative x direction. Similarly,
atm->addParticle(new ATMForce::ParticleOffsetDisplacement(4, 3, 2, 1));
adds a particle whose position is displaced by pos[4]-pos[3] before calculating u1 and by pos[2]-pos[1] before calculating u0.
The ATMForce class has the ability to compute derivatives of the potential energy with respect to global parameters. Call addEnergyParameterDerivative() to request that the derivative with respect to a particular parameter be computed. You can then query its value in a Context by calling getState() on it.
Public Functions
-
explicit ATMForce(const std::string &energy)¶
Create an ATMForce object.
- Parameters:
energy – an algebraic expression giving the energy of the system as a function of u0 and u1, the energies before and after displacement
-
ATMForce(double lambda1, double lambda2, double alpha, double uh, double w0, double umax, double ubcore, double acore, double direction)¶
Create an ATMForce object with the default softplus energy expression. The values passed to this constructor are the default values of the global parameters for newly created Contexts. Their values can be changed by calling setParameter() on the Context using the parameter names defined by the Lambda1(), Lambda2(), etc. methods below.
- Parameters:
lambda1 – the default value of the Lambda1 parameter (dimensionless). This should be a number between 0 and 1.
lambda2 – the default value of the Lambda2 parameter (dimensionless). This should be a number between 0 and 1.
alpha – the default value of the Alpha parameter (kJ/mol)^-1
uh – the default value of the Uh parameter (kJ/mol)
w0 – the default value of the W0 parameter (kJ/mol)
umax – the default value of the Umax parameter (kJ/mol)
ubcore – the default value of the Ubcore parameter (kJ/mol)
acore – the default value of the Acore parameter dimensionless)
direction – the default value of the Direction parameter (dimensionless). This should be either 1 for the forward transfer, or -1 for the backward transfer.
-
int getNumParticles() const¶
Get the number of particles managed by ATMForce.
This should be the same number of particles as the System
-
int getNumGlobalParameters() const¶
Get the number of global parameters that the interaction depends on.
-
int getNumEnergyParameterDerivatives() const¶
Get the number of global parameters with respect to which the derivative of the energy should be computed.
-
const std::string &getEnergyFunction() const¶
Get the algebraic expression that gives the energy of the system
-
void setEnergyFunction(const std::string &energy)¶
Set the algebraic expression that gives the energy of the system
-
int addParticle()¶
Add a stationary particle: one whose coordinate is not transformed
All of the particles in the System must be added to the ATMForce in the same order as they appear in the System.
- Returns:
the index of the particle that was added
-
int addParticle(const Vec3 &displacement1, const Vec3 &displacement0 = Vec3())¶
Add a particle to the force with fixed lab frame displacements
- Deprecated:
This method exists only for backward compatibility. Use: addParticle(new ATMFixedDisplacement(displacement1, displacement0))
All of the particles in the System must be added to the ATMForce in the same order as they appear in the System.
- Parameters:
displacement1 – the displacement of the particle for the target state in nm
displacement0 – the displacement of the particle for the initial state in nm
- Returns:
the index of the particle that was added
-
int addParticle(CoordinateTransformation *transformation)¶
Add a particle to the force with a coordinate transformation method
All of the particles in the System must be added to the ATMForce in the same order as they appear in the System.
- Parameters:
transformation – the pointer to the CoordinateTransformation object, which should have been created on the heap with the “new” operator. The ATMForce takes over ownership of it, and deletes the CoordinateTransformation when the ATMForce itself is deleted. Currently supported transformations are FixedDisplacement and ParticleOffsetDisplacement.
- Returns:
the index of the particle that was added
-
void getParticleParameters(int index, Vec3 &displacement1, Vec3 &displacement0) const¶
Get the parameters for a particle
- Deprecated:
This method exists only for backward compatibility. Use: const ATMForce::CoordinateTransformation& transformation = getParticleTransformation(index); Vec3 displacement1 = dynamic_cast<const ATMForce::FixedDisplacement*>(&transformation)->getFixedDisplacement1(); Vec3 displacement0 = dynamic_cast<const ATMForce::FixedDisplacement*>(&transformation)->getFixedDisplacement0();
- Parameters:
index – the index in the force for the particle for which to get parameters
displacement1 – the fixed lab-frame displacement of the particle for the target state in nm
displacement0 – the fixed lab-frame displacement of the particle for the initial state in nm
-
void setParticleParameters(int index, const Vec3 &displacement1, const Vec3 &displacement0 = Vec3())¶
Set the displacements for a particle as fixed lab frame vectors
- Deprecated:
This method exists only for backward compatibility. Use: setParticleTransformation(index, new ATMForce::FixedDisplacement(displacement1, displacement0))
- Parameters:
index – the index in the force of the particle for which to set parameters
displacement1 – the fixed lab-frame displacement of the particle for the target state in nm
displacement0 – the fixed lab-frame displacement of the particle for the initial state in nm
-
int addGlobalParameter(const std::string &name, double defaultValue)¶
Add a new global parameter that the interaction may depend on. The default value provided to this method is the initial value of the parameter in newly created Contexts. You can change the value at any time by calling setParameter() on the Context.
- Parameters:
name – the name of the parameter
defaultValue – the default value of the parameter
- Returns:
the index of the parameter that was added
-
const std::string &getGlobalParameterName(int index) const¶
Get the name of a global parameter.
- Parameters:
index – the index of the parameter for which to get the name
- Returns:
the parameter name
-
void setGlobalParameterName(int index, const std::string &name)¶
Set the name of a global parameter.
- Parameters:
index – the index of the parameter for which to set the name
name – the name of the parameter
-
double getGlobalParameterDefaultValue(int index) const¶
Get the default value of a global parameter.
- Parameters:
index – the index of the parameter for which to get the default value
- Returns:
the parameter default value
-
void setGlobalParameterDefaultValue(int index, double defaultValue)¶
Set the default value of a global parameter.
- Parameters:
index – the index of the parameter for which to set the default value
defaultValue – the default value of the parameter
-
void addEnergyParameterDerivative(const std::string &name)¶
Request that this Force compute the derivative of its energy with respect to a global parameter. The parameter must have already been added with addGlobalParameter().
- Parameters:
name – the name of the parameter
-
const std::string &getEnergyParameterDerivativeName(int index) const¶
Get the name of a global parameter with respect to which this Force should compute the derivative of the energy.
- Parameters:
index – the index of the parameter derivative, between 0 and getNumEnergyParameterDerivatives()
- Returns:
the parameter name
-
void updateParametersInContext(Context &context)¶
Update the per-particle parameters in a Context to match those stored in this Force object. This method should be called after updating parameters with setParticleParameters() to copy them over to the Context. The only information this method updates is the values of per-particle parameters. The number of particles cannot be changed.
-
virtual bool usesPeriodicBoundaryConditions() const¶
Returns whether or not this force makes use of periodic boundary conditions.
-
void getPerturbationEnergy(Context &context, double &u1, double &u0, double &energy)¶
Returns the current perturbation energy.
- Parameters:
context – the Context for which to return the energy
u1 – on exit, the energy of the displaced state
u0 – on exit, the energy of the non-displaced state
energy – on exit, the value of this force’s energy function
-
void setParticleTransformation(int index, CoordinateTransformation *transformation)¶
Change the coordinate transformation method for the specified particle
- Parameters:
index – the index of the particle
transformation – the pointer to the CoordinateTransformation object, which should have been created on the heap with the “new” operator. The ATMForce takes over ownership of it, and deletes the CoordinateTransformation when the ATMForce itself is deleted.
-
const CoordinateTransformation &getParticleTransformation(int index) const¶
Returns the Transformation object associated with the particle
- Parameters:
index – the index of the particle
- Returns:
the CoordinateTransformation object associated with the particle
Public Static Functions
-
static inline const std::string &Lambda1()¶
Returns the name of the global parameter corresponding to lambda1. The value assigned to this parameter should be a number between 0 and 1.
-
static inline const std::string &Lambda2()¶
Returns the name of the global parameter corresponding to lambda2. The value assigned to this parameter should be a number between 0 and 1.
-
static inline const std::string &Alpha()¶
Returns the name of the global parameter corresponding to alpha. The value assigned to this parameter should be in units of (kJ/mol)^-1.
-
static inline const std::string &Uh()¶
Returns the name of the global parameter corresponding to uh. The value assigned to this parameter should be in units of (kJ/mol).
-
static inline const std::string &W0()¶
Returns the name of the global parameter corresponding to w0. The value assigned to this parameter should be in units of (kJ/mol).
-
static inline const std::string &Umax()¶
Returns the name of the global parameter corresponding to umax. The value assigned to this parameter should be in units of (kJ/mol).
-
static inline const std::string &Ubcore()¶
Returns the name of the global parameter corresponding to ubcore. The value assigned to this parameter should be in units of (kJ/mol).
-
static inline const std::string &Acore()¶
Returns the name of the global parameter corresponding to acore.
-
static inline const std::string &Direction()¶
Returns the name of the global parameter corresponding to direction. The value assigned to this parameter should be either 1 for the forward transfer, or -1 for the backward transfer.
-
class CoordinateTransformation¶
The CoordinateTransformation class describes a generic coordinate transformation applied to a particle. It is a virtual base class. Use the derived classes FixedDisplacement and ParticleOffsetDisplacement to define actual coordinate transformations.
Subclassed by OpenMM::ATMForce::FixedDisplacement, OpenMM::ATMForce::ParticleOffsetDisplacement
-
class FixedDisplacement : public OpenMM::ATMForce::CoordinateTransformation¶
The FixedDisplacement class describes a coordinate transformation where a particle is displaced by a fixed amount. To use it, create a FixedDisplacement object passing the displacement vectors for the two states evaluated by ATMForce. The first displacement applies to the target state, and the second to the reference state. The second displacement can be omitted, in which case it is set to zero.
-
class ParticleOffsetDisplacement : public OpenMM::ATMForce::CoordinateTransformation¶
The ParticleOffsetDisplacement class describes a coordinate transformation in which a particle is displaced by the vector distance between two particles. The displacement is variable because it changes as the two particles move. To use it, create a ParticleOffsetDisplacement passing the indexes, pDestination1 and pOrigin1, respectively, of the two particles, resulting in the variable displacement pos[pDestination1]-pos[pOrigin1] if the array pos holds the particles’ positions. Optionally, a second set of particles, pDestination0 and pOrigin0, can be specified to apply a similar variable displacement at the reference state of the ATMForce.
-
explicit ATMForce(const std::string &energy)¶